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Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease of unknown 

etiology that poses significant challenges in early diagnosis and prediction of progression. 

Analyses of microRNA and gene expression in IPF have yielded potentially predictive 

information. However, the relationship between microRNA/gene expression and quantitative 

phenotypic value in IPF remains controversial, as is the added value of this approach to current 

molecular signatures in IPF. To identify biomarkers predictive of survival in IPF via a microRNA-

driven strategy. We profiled microRNA and protein-coding gene expression in peripheral blood 

mononuclear cells from 70 IPF subjects in a discovery cohort. We linked the microRNA/gene 

expression level with the quantitative phenotypic variation in IPF, including diffusing capacity of 

the lung for carbon monoxide and the forced vital capacity percent predicted. In silico analyses of 
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expression profiles and quantitative phenotypic data allowed the generation of two sets of IPF 

molecular signatures (unique for microRNAs and protein-coding genes) that predict IPF survival. 

Each signature performed well in a validation cohort comprised of IPF patients aggregated from 

distinct patient populations recruited from different sites. Resampling test suggests that the 

protein-coding gene based signature is comparable and potentially superior to published IPF 

prognostic gene signatures. In conclusion, these results highlight the utility of microRNA-driven 

peripheral blood molecular signatures as valuable and novel biomarkers associated to individuals 

at high survival risk and for potentially facilitating individualized therapies in this enigmatic 

disorder.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive, chronic interstitial lung 

disease of unknown cause 1,2. IPF primarily occurs in older adults, and is associated with the 

histopathologic and/or radiologic pattern of usual interstitial pneumonia (UIP) 3 and is the 

most common among the idiopathic interstitial pneumonias listed by the American Thoracic 

Society/European Respiratory Society 4. The time course for IPF progression is highly 

variable: ranging from stability for several years to acute exacerbations with rapid 

deterioration. IPF is a terminal disease with a life expectancy of 3–5 years after an early 

diagnosis 5. Current drugs only moderately slow the progression of the disease 6 and no drug 

reverses fibrosis development. Lung transplantation is the only curative therapy available for 

the treatment of IPF 7.

One critical barrier to monitor improvement and outcomes in IPF and to the identification of 

effective therapies has been the paucity of reliable biomarkers for diagnosis, prognosis, and 

responses to therapy 1,2. Unfortunately, the search for effective IPF biomarkers is hindered 

by the inherent heterogeneity of the disease along with the consistent lack of correlation 

between biochemical markers, pathophysiologic variables and clinical outcomes 5,8,9. 

Traditional methods to predict survival in IPF relies on the clinician integrating the clinical, 

laboratory, radiologic, and/or pathologic data to make a clinical-radiologic-pathologic 

correlation 5,10. Current IPF biomarkers include Mucin protein 1 (MUC-1)11, CC chemokine 

ligand 18 (CCL18)12, serum surfactant proteins A (SP-A)13 and chitinase-like glycoprotein 

YKL-4014. However, most biomarker studies are limited by the scale of candidate 

biomarkers, cohort size, and lack replication 8. More recently, there has been a growing 

interest in the utility of genome-wide expression profiling to generate molecular signatures 

either from diseased tissues 15-22, whole blood or peripheral blood mononuclear cell 

(PBMC) RNA 23-25. The clinical utility of peripheral blood gene expression profiling for the 

identification of molecular signatures as a surrogate for tissue biopsies has been studied in 

multiple diseases and disorders, including cancers and neurologic disease26. Similarly, in 

lung diseases, studies in COPD and sarcoidosis, have found overlapping gene expression 
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signatures between blood and lung tissue 27,28. More recently, we identified a 52-gene 

expression signature in peripheral blood from IPF patients prospectively 23,29, which 

identified two molecular endotypes of IPF patients with significant differences in mortality 

or transplant-free survival in all cohorts indicating this approach is of significant utility for 

risk stratification in IPF.

Another approach to gene biomarker identification has been to utilize the power of 

microRNA (miRNA)-co-expressed genes in complex disease. miRNAs influence the gene 

expression at the posttranscriptional level; they are involved in multiple physiological 

processes such as metabolism, homeostasis, apoptosis and inflammatory process. Evidence 

revealed that miRNAs are involved in a wide range of diseases and hence their potential use 

as biomarkers 30,31. We recently reported a 17 unique protein-coding gene signature in 

sarcoidosis derived from PBMC miRNA associated with Jak-STAT signaling pathway as the 

most significantly represented pathway32. This miRNA-regulated gene signature correlated 

with severity scores and differentiated sarcoidosis patients from healthy controls in 

independent validation cohorts. In IPF miRNAs are reported to be involved in lung epithelial 

repair, epithelial-mesenchymal transition, fibroblast activation, myofibroblast differentiation, 

macrophage polarization, alveolar epithelial cells senescence and collagen production 33.

In the current study, we sought to validate the utility of a miRNA approach utilizing profiled 

miRNA and protein-coding gene expression in PBMCs of well phenotyped IPF subjects.

We aim to correlate miRNA/gene expression levels with the quantitative phenotypic 

variation reported the pulmonary function test, such as the lung diffusing capacity (DLCO) 

and the forced vital capacity (FVC) percent predicted. DLCO values represent the ability of 

the lung to transfer inhaled air to the blood stream and act as a surrogate marker of lung 

damage34 , similarly, FVC is considered a reliable measure of clinical status in patients with 

IPF35, declining of the FVC is associated with an increase in mortality 36. In silico analyses 

of expression profiles and quantitative phenotypic data allowed the generation of two sets of 

IPF molecular signatures (unique to miRNAs and to protein-coding genes) that predict IPF 

survival in both the study and validation cohorts. Further resampling test suggests that our 

protein-coding gene signature is comparable and potentially superior to published IPF 

prognostic gene signatures 23,29. These results highlight the utility of miRNA-driven 

peripheral blood molecular signatures as valuable and novel biomarkers for survival and 

may potentially facilitate development of individualized therapies in this enigmatic disorder.

Materials and Methods

Subjects and PBMC samples

This research was carried out according to the principles of the Declaration of Helsinki. The 

Institutional Review Boards from University of Illinois at Chicago and University of 

Chicago (IRB #2010-0191 and 14104B respectively) approved the study. Written informed 

consent was obtained from all participants. The diagnosis of IPF was based on established 

international criteria 37. IPF subjects were categorized into two datasets (Datasets A and B). 

Dataset A contained European descent non-Latino Caucasian Americans with IPF and 

known DLCO and FVC percent predicted (n = 47). Dataset B consisted of IPF patients of 
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African descent (n=6), Hispanics (n=4), Asian descent (n=1) and European descent non-

Latino Caucasian Americans without known DLCO and FVC percent predicted (n = 6), as 

well as patients with unknown race information (n = 6). In total 23 IPF subjects were 

included in Dataset B. In silico studies focused on Dataset A. Dataset B was used as a 

validation cohort. Table 1 shows the characteristics of the IPF patients in the study and 

validation cohorts. For comparison purpose, we also included 32 European descent control 

subjects in this study (Dataset C).

Profiling transcriptional expression utilizing exon arrays

Isolation of PBMC from peripheral blood from 70 subjects was performed using the Ficoll-

Paque method. Total RNA was isolated from PBMCs using standard molecular biology 

protocols (n=70) without DNA contamination or RNA degradation. Sample processing (e.g. 

cDNA generation, fragmentation, end labeling, hybridization to Affymetrix GeneChip 

Human Exon 1.0 ST arrays) was performed by the University of Chicago Functional 

Genomics Facility per manufacturer’s instructions. Expression arrays were analyzed using 

the Affymetrix Power Tools v.1.12.0 (http://www.affymetrix.com/). The experimental probe 

masking workflow provided by the Affymetrix Power Tools was utilized to filter the probe 

set (exon-level) intensity files by removing probes that contain known SNPs in the dbSNP 

database 38. Overall, of the ~1.4 million probe sets on the exon array, ~350,000 probe sets 

were found to contain at least one probe with a SNP (~600,000 probes) 39. The resulting 

probe signal intensities were quartile normalized over all 70 samples. Probeset expression 

signals were summarized with the robust multi-array average (RMA) algorithm 40 and log2-

transformed with a median polish. Expression signals of the ~22,000 transcript clusters 

(gene-level) were generated with the core set (i.e., with RefSeq-supported annotations) 41 of 

exons by taking averages of all annotated probe sets for each transcript cluster. Adjustment 

for possible batch effect was conducted by COMBAT (http://jlab.byu.edu//ComBat/) 42. A 

transcript cluster was considered to be reliably expressed in these samples if the Affymetrix 

implemented DABG (detection above ground) 43 P-value was less than 0.01 in at least 67% 

of the samples. We further limited our analysis set to the genes with unique annotations (i.e., 

transcripts corresponding to unique genes) from the Affymetrix NetAffy website (https://

www.affymetrix.com/analysis/netaffx/, accessed on Nov. 12, 2011). We also removed genes 

on chromosomes X and Y to avoid the potential confounding factor of sex. Totally, 11,245 

transcript clusters met these criteria and were further analyzed. The microarray data has 

been uploaded into NCBI GEO database (GEO accession number: GSE38958)

Profiling miRNA expression using the Exiqon array

The expression levels of miRNAs were profiled using the Exiqon miRCURY™ LNA Array 

v10.0 (~700 human miRNAs). Briefly, total RNA from PBMCs was extracted and prepared 

per the manufacturer’s protocol. Array hybridization was performed by Exiqon with the 

quantified signals background corrected using normexp with offset value 10 based on a 

convolution model 44 and normalized using the global Lowess regression algorithm. In total, 

243 miRNAs were expressed in our study cohort (i.e., present in at least 66.7% of total 

samples). The MirSVR score, a support vector regression tool provided by microrna.org, 

was used to rank miRNAs target sites.
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Statistical analysis

Spearman’s rank correlation test was used to detect the relationship between miRNA/gene 

expression level and IPF physiologic features including DLCO and FVC. We calculated 

correlation coefficients and associated P-values using the R function “cor.test()” with 

method “spearman”. The “survival” library of the R was used to conduct survival analysis. 

Kaplan-Meier survival curves were used to visualize the difference between patients with 

high- and low-mortality risk. To determine whether the prognostic power of the gene 

signature was potentially by chance alone, we performed a resampling test by generating 

1,000 random gene signatures 45-47. Cox proportional hazards regression of survival was 

conducted for each resampled gene signature. The association between each random gene 

signature and survival was measured by Cox regression coefficient.

Risk score

Based on the relationship between miRNA/gene expression and DLCO and FVC, we 

assigned each patient miRNA based and gene-based risk scores to predict survival by:

smiRNA = − ∑i = 1
nmiRNA sgn(ρimiRNA) ⋅ eimiRNA (1)

sgene = − ∑i = 1
ngene sgn(ρi

gene) ⋅ ei
gene (2)

Here, smiRNA and sgene are the miRNA based and gene based patient risk scores respectively; 

nmiRNA and ngene are the numbers of miRNAs and genes respectively; ei
gene and eimiRNA are 

the expression levels of miRNA i and gene i respectively; ρimiRNA and ρi
geneare the 

Spearman’s rank correlation coefficients computed from the Dataset A (study cohort) for 

miRNA i and gene i respectively; and “sgn” denotes the sign function. A high score 

indicates a poor disease severity. The risk score was dichotomized based on the observed 

median for both the study and validation cohorts.

Results

Patient characteristics

The clinical characteristics of all study patients are displayed in Table 1. Significant 

differences in age and gender did not exist between the study cohorts (Dataset A and Dataset 

B) a (P = 0.89 by t-test for age and P = 0.936 by χ2 test for gender).

Identifying the miRNAs correlated with lung function in IPF PBMCs

To determine the differentially expressed miRNAs correlated with lung function in IPF 

PBMCs, we analyzed miRNA expression pattern in Dataset A and linked miRNA expression 

level with IPF quantitative phenotypic data including DLCO and FVC. Spearman’s rank 

correlation test was conducted both between expression value and DLCO and between 

expression value and FVC. The P-value of the correlation of DLCO and FVC with 

expression was recorded as PDLCO
miRNA and PFV C

miRNA respectively. In total, twelve miRNAs 
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yielded a 12-miRNA signature with both PDLCO
miRNA < 0.05 and PFV C

miRNA < 0.05, which was 

largely mirrored by the results generated by linear regression (Table S1). Eight of the twelve 

miRNAs showed positive correlation between expression and DLCO and FVC whereas four 

miRNAs showed negative correlation (Table 2, Figures 1 and S1), i.e. 4 up-regulated and 8 

down-regulated miRNAs were identified in patients with relatively more severe IPF (Figure 

2A).

Survival by the prioritized miRNAs

A risk score was assigned to each patient based on the expression of the 12-miRNA 

signature using formula (1). A high-risk score indicated a poor outcome. Patients were 

categorized as having a high-risk miRNA signature or a low-risk miRNA signature, with the 

median of the risk score as the threshold value. For our study cohorts, we tested the ability 

of risk score to correlate patients into prognostic groups based on miRNA expression. 

Kaplan-Meier survival analysis comparing patient groups demonstrated a significantly 

reduced survival for high-risk patients (P = 0.005) (Figure 2B). This association between 

risk score and survival was confirmed by Cox proportional hazard analysis of survival. High-

risk patients exhibited a 5.43-fold increased risk for death (P = 0.011).

Identifying the genes correlated with lung function in IPF PBMCs

To determine protein-coding genes in IPF PBMCs that were correlated with lung function, 

we analyzed gene expression patterns in Dataset A and linked gene expression levels with 

DLCO and FVC. Spearman’s rank correlation test was conducted between gene expression 

value and DLCO and FVC. The P-value of the correlation of DLCO and FVC with 

expression was recorded as PDLCO
gene  and PFV C

gene  respectively. In total, we found 712 genes 

with both PDLCO
gene  < 0.01 and PFV C

gene  < 0.01. 505 genes showed positive correlation (down-

regulated in patients with relatively more severe IPF) between expression and DLCO and 

FVC while 207 showed negative pattern (up-regulated in patients with relatively more severe 

IPF). A search for enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) 48 

physiological pathways among the prioritized genes using the NIH/DAVID 49,50 revealed 16 

KEGG pathways (P < 0.05), including “Ubiquitin-mediated proteolysis”, “Leukocyte 

transendothelial migration”, “RIG-I-like receptor signaling pathway”, “B cell receptor 

signaling pathway”, “T cell receptor signaling pathway”, “Focal adhesion”, and “ECM-

receptor interaction” (Figure 2C). It is noteworthy that the T cell-associated pathway was 

also found to be enriched among the published IPF prognostic genes 23,29.

miRNA-mRNA in silico analysis

We next searched for a list of predicted gene targets for the 12-miRNA signature using the in 
silico prediction provided by microrna.org 51, with filtering based on a stringent mirSVR 

score cutoff of −1.2 (this value represents the top 5% of mirSVR scores) to select the top 

miRNA-mRNA binding pairs 52. We intersected these predicted mRNA targets against the 

microarray-observed 712 differentially expressed protein-coding genes revealing a total of 

22 miRNA-mRNA pairs (Table 3). These 22 miRNA-mRNA pairs consisted of 21 unique 

protein-coding genes yielding a 21-gene signature (Figure 2D). Linear regression further 
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confirmed the relationship between the expression of the 21-gene signature and DLCO/FVC 

(Table S2). The direction of correlation of DLCO/FVC with expression of these 21 genes is 

exactly opposite to the direction of expression of the corresponding silencing miRNAs in the 

12-miRNA signature (Figure S2 and S3). When the expression of each miRNA and target 

gene was directly compared, 17 of 22 miRNA-mRNA pairs demonstrated a significant 

inverse correlation (P < 0.05) in expression (Figure S4), which was largely mirrored by the 

results generated by linear regression (Table S3). We further checked the miRNA-mRNA 

binding prediction obtained from the miRDB database 53. We found that 16 out of the 22 

miRNA-mRNA pairs have a miRDB score larger than 50, which suggests the highly 

consistent outputs between the mirSVR and miRDB prediction algorithms (Table 3). Finally, 

we compared the expression pattern between the control subjects and IPF patients and eight 

out 21 genes were found to be differentially expressed (P < 0.05) (Figure S5).

Survival by the 21-gene signature

Utilizing a strategy employed for generation of the 12-miRNA signature, we next assigned a 

risk score to each patient based on the expression of the 21-gene signature using the above-

cited formula (2). High-risk patients were defined as having a risk score greater than or 

equal to the group median score. In our study cohorts, we tested the ability of the score to 

assign patients into distinct prognostic groups based on gene expression. Kaplan-Meier 

survival analysis comparing patient groups demonstrated a significantly reduced survival for 

high-risk patients (P = 0.002) (Figure 2B). This association between risk score and survival 

was also confirmed by Cox proportional hazard analysis of survival; High-risk IPF patients 

exhibited a 7.79-fold increased risk for death (P = 0.008).

Validating the 12-miRNA and 21-gene signature

We used Dataset B as validation cohort. Unique risk scores were assigned to each patient 

based on the expression of the 12-miRNA and 21-gene signature respectively. High-risk 

patients were again defined as having a risk score greater than or equal to the group median 

score. Kaplan-Meier survival analysis demonstrated significantly reduced survival for high-

risk patients, regardless of which signature was utilized (P = 0.043 for 12-miRNA signature 

and P = 0.018 for 21-gene signature) (Figure 3).

Survival analysis controlling for age

Since age is one of the major factors that affect life expectancy in IPF 5, we compared IPF 

patients older than 65 y/o to patients less than 65 y/o (65 is rough the median age among our 

patients). Both the 12-miRNA and 21-gene signatures significantly predicted survival within 

each older and younger IPF group, although the risk score of the 12-miRNA signature was 

only marginally different (P = 0.054) between high-risk and low-risk patients in the younger 

IPF group (Figure 4).

Comparison with published gene signatures

Recently, Herazo-Maya et al. presented an IPF prognostic signature containing 52 genes 

(52-gene signature, GSE28221), which was identified from PBMC gene expression profiles 
23 and utilized an independent validation cohort comprised of 75 IPF subjects. More 
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recently, it was demonstrated that adding 52-gene risk profiles to the gender, age, and 

physiology index significantly improved IPF mortality predictive accuracy 29. We evaluated 

the performance of our 21-gene signatures in that validation cohort. Kaplan-Meier survival 

analysis comparing patient groups indicated that the survival curves are different between 

patients with high- and low-mortality risk. Survival was significantly reduced for high-risk 

patients (P = 0.009) (Figure 5A). This association between risk score and survival was also 

confirmed by Cox proportional hazard analysis of survival. High-risk IPF patients exhibited 

a 2.28-fold increased risk for death (P = 0.011).

A published computational study indicated that random gene signatures have a high 

probability to be associated with survival outcome in breast cancer and published signatures 

are not significantly more associated with outcome than random predictors 47. To address 

this potentially confounding issue, we performed a resampling test to determine whether the 

prognostic power of the 21-gene signature was potentially by chance alone and generated 

1,000 random gene signatures with a size identical to the 21-gene signature. Cox 

proportional hazards regression of survival was conducted for each resampled gene 

signature. The association between each random gene signature and survival was measured 

by Cox regression coefficient. We found that we could reject the null hypothesis that the 

association between 21-gene signature and survival is by chance (one-tailed P = 0.011) 

(Figure 5B).

To compare the performance between the 21-gene and 52-gene signatures, a different 

resampling test was conducted. We generated 1,000 random gene signatures by randomly 

selecting 21 genes from the 52-gene signature. Cox proportional hazards regression of 

survival was conducted for each resampled gene signature. Among the 1,000 times of 

randomization, there were only 11 resampled gene signatures with higher Cox regression 

coefficient compared with that of our 21-gene signature (one-tailed P = 0.011) (Figure 5B).

Discussion

IPF is a progressive disease refractory to current therapies with an average survival of 3 to 5 

years after diagnosis, although the rapidity to disease progression varies significantly among 

individuals. Traditionally, clinical, radiologic, and physiologic measurements are used as 

survival determinants 5. A major goal of the current study was to identify potential miRNA 

or gene signatures to serve as novel biomarkers for survival in IPF and specifically to assess 

whether profiled miRNA and protein-coding gene expression in PBMCs added value to 

current signature approaches as suggested by our prior miRNA and protein-coding studies in 

sarcoidosis 32. In contrast to dividing samples into control and patient groups, we only 

included IPF patient samples in our study and elected not to perform categorical statistics on 

patient data. Instead, we used Spearman’s rank correlation test to link the miRNA/gene 

expression level in PBMCs with the quantitative phenotypic variation in IPF including 

DLCO percent predicted and FVC percent predicted, reflections of disease severity. This 

approach reflects our belief that both statistical power and accuracy are advantaged by 

utilization of continuous statistics over categorical statistics. Largely, the result of artificial 

categorization of continuous variables may significantly bias results. We speculated that use 
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of these quantitative methods may provide novel insights into understanding of miRNA/gene 

expression profiles in IPF and yield a biomarker signature with substantial clinical utility.

Based on quantitative analysis, we initially identified 12 miRNAs (4 miRNAs up-regulated, 

8 miRNAs down-regulated) that potentially relate to IPF severity including hsa-miR-150, 

hsa-miR-31, and hsa-miR-144, now recognized to be related to lung cancer 54,55, 

thalassemia 56, and sepsis 57. In a recent study, lung miRNA expression profiles were 

compared between IPF patients and healthy controls with a greater number of up-regulated 

miRNAs vs down-regulated miRNAs identified in IPF patients 18. In our studies, we 

identified only a single miRNA (hsa-miR-31) within our 12-miRNA signature that 

overlapped with the reported list of differentially expressed miRNAs between IPF patients 

and healthy controls (10). In addition, the directionality of hsa-miR-31 expression in our 

analysis was inconsistent between the two studies. This lack of overlap may reflect tissue-

specific expression as our study did not evaluate lung tissue expression but rather analysis of 

PBMC expression, perhaps consistent with the notion that miRNA expression may be more 

tissue-specific than mRNA expression 58. Based on the expression of the 12-miRNA 

signature, a scoring system was developed reflecting the extent and severity of IPF. We 

demonstrated that this miRNA-based score was significantly predictive of survival in IPF in 

both discovery and validation cohorts.

We also explored the utility of a protein-coding gene expression signature in IPF. Using 

Spearman’s rank correlation test, we identified 207 up-regulated and 505 down-regulated 

genes in patients with increased severity of IPF. In agreement with prior reported studies, 

these prioritized genes were enriched in pathways such as “Ubiquitin mediated proteolysis” 
16, “T cell receptor signaling pathway” 23, “Leukocyte transendothelial migration” 59, “B 

cell receptor signaling pathway” 60, “Focal adhesion” 60-62, and “ECM-receptor interaction” 
61. The potential role of miRNAs in regulating the dysregulated genes in IPF was examined 

using in silico prediction of miRNA target genes. We identified 22 miRNA-mRNA pairs, 

which consisted of 21 unique protein-coding genes. Several signature genes, e.g. ABHD10, 

DECR1, DST, DUSP10, EXOSC9, and TTC35, have been previously reported as 

dysregulated in IPF lung tissue when compared to normal lung fibroblasts 63. Using the 21-

gene signature, we also assigned each patient a risk score and identified that the gene-based 

risk score significantly associated to IPF outcome in both study and validation cohorts. 

Utilizing 1,000 times randomization, we found that 21 genes randomly picked from the pool 

of the 712 dysregulated genes in IPF yielded predictive power only 10% as effective as our 

21-gene signature thereby highlighting the contribution of miRNA expression to capture 

dysregulated genes (data not shown). Moreover, although patient’s age is a major factor 

affecting survival rate 5, we demonstrated that both 12-miRNA and 21-gene signatures 

performed well even when age was controlled for as a confounding factor.

In our study cohort (Dataset A), we only included Caucasian American patients because the 

variation among different populations may amplify the noise in expression data. In contrast, 

our validation cohort (Dataset B) contained patients not only from Caucasian American but 

also from other races including African, Hispanic, and Asian Americans. However, the racial 

complexity of the validation cohort did not affect the performance of our 12-miRNA and 21-
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gene signatures in survival prediction. Both signatures successfully separated high-risk from 

the low-risk patients.

We compared our 21-gene signature with our prior published IPF prognostic 52-gene 

signature, which was also obtained from PBMC genome-wide profiles 23 and determined 

that the 21-gene signature effectively predicted clinical outcome in the validation cohort of 

that study. More recently, the 52-gene expression signature in peripheral blood from IPF 

patients was prospectively evaluated in a six-cohort study 29, which identified two molecular 

subphenotypes (low and high risk) of IPF patients with significant differences in mortality or 

transplant-free survival in all cohorts indicating this approach is of significant utility for risk 

stratification in IPF. Both our results and the 52-gene signature indicate that T cell-

associated pathways are closely related to the prognosis of IPF. Resampling tests and 

comparison of our miRNA-derived 21-gene signature to our prior 52 gene signature 

indicates that the prognostic power of the 21-gene signature is not by chance. Furthermore, 

random selection of genes from the 52-gene signature failed to outperform our 21-gene 

signature. Whether the 21-gene signature identifies a unique sub-phenotype distinct from 

those identified by the 52-gene signature remains to be explored.

There are limitations to our study. One related to our analysis, although Spearman 

correlation coefficient can identify relationship between two continuous variables, it is 

possible that we missed signals if the relationship had a non-linear relationship that was not 

monotone. Another limitation to our study is primarily due to the retrospective study design, 

clinical data to correlate disease progression on these patients was absent, which limits the 

prediction performance of the proposed signature.

In summary, we derived two sets of unbiased molecular signatures from PBMCs for miRNA 

and protein-coding gene, respectively. Both signatures can be independently used as 

potential novel molecular biomarkers associated to IPF outcome. Although miRNA/gene 

expression variation in PBMCs may not necessarily reflect the dynamics of the pulmonary 

microenvironment in IPF patients, the potential contribution of these circulating cells in 

biomarker discovery has been well established. These results correlate pulmonary function 

tests with epigenomics mechanisms underlaying IPF and adds translational value to the 

clinical parameters commonly used for monitoring clinical status. The potential for the 21-

gene signature to have clinical value in IPF studies will serve to validate the utility of this 

biomarker in the clinical care of IPF patients for survival prediction and serve as springboard 

to personalized therapies in this chronic and progressive form of lung disease.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Expression level as a function of DLCO for the 12-miRNAs signature in IPF. Y-axis denotes 

the relative miRNA expression level. Each point represents a single IPF subject. The P-value 

for each miRNA is measured by Spearman’s rank correlation test.
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Figure 2. 
12-miRNA and 21-gene signatures of IPF. (A) Heatmap of 12-miRNA signature. Red 

represents increased miRNA expression while blue represents decreased expression. 

Subjects are labeled by their corresponding DLCO and FVC % predicted (DLCO ∣ FVC). 

(B) Kaplan-Meier curves for patients from study cohort with high and low risk scores. High 

scores correspond to the higher predicted risk and low scores correspond to the lower 

predicted risk. The P-values for both the 12-miRNA and 21-gene signatures are measured by 

log-rank test. (C) Enriched pathways among the prioritized 712 genes in IPF. The top 20 

ranked KEGG pathways are listed. The red line indicates the cutoff of significance (0.05). 

The number of genes in each pathway is shown beside the pathway name. (D) Heatmap of 

21-gene signature. Red represents increased gene expression while blue represents gene 

expression. The patients are labeled by their corresponding DLCO and FVC % predicted 

(DLCO ∣ FVC).
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Figure 3. 
Kaplan-Meier curves for patients from validation cohort with high- and low-risk scores. 

High-risk scores correspond to the higher predicted risk and low scores correspond to the 

lower predicted risk. The P-values for both the 12-miRNA and 21-gene signatures are 

measured by log-rank test.
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Figure 4. 
Kaplan-Meier curves for patients with high and low risk scores stratified by age group. The 

patients older than 65 and younger or equal to 65 are analyzed separately. High scores 

correspond to the higher predicted risk and low scores correspond to the lower predicted 

risk. In total, there were 21 and 26 patients with age ≤ 65 and > 65, respectively. The P-

values for both the 12-miRNA and 21-gene signatures are measured by log-rank test.
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Figure 5. 
Comparison between the 21-gene and 52-gene signatures. (A) Kaplan-Meier curves of the 

21-gene signature in the validation cohort of Herazo-Maya et al.’s study. High scores 

correspond to the higher predicted risk and low scores correspond to the lower predicted 

risk. The P-values are measured by log-rank test. (B) Non-random predictive power of the 

21-gene signature. Z denotes the Cox regression coefficient. The black dots stand for the Z 

values of the 21-gene signature. The grey histograms show the distribution of Z values for 

the 1,000 resampled gene signatures (genes were randomly picked up from human genome) 

with identical size as 21-gene signature under the null hypothesis of no association between 

21-gene signature and survival. The black curve shows the distribution of Z values for the 

1,000 resampled gene sets obtained from the 52-gene signature (genes were randomly 

picked up from Herazo-Maya et al.’s 52-gene signature).
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Table 1.

Patient characteristics

Characteristics Dataset A (n=47) Dataset B (n=23)

Age 68.3 ± 6.9 67.9 ± 8.6

Gender (Male/Female) 40/7 19/4

FVC % predicted 62.5 ± 14.6 -

DLCO % predicted 43.5 ± 16.9 -

Data are presented as n, mean ± sd or %. FVC: forced vital capacity, DLCO: diffusing lung capacity for carbon monnoxide
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Table 2.

The miRNAs correlated with lung function in IPF PBMCs

miRNA

DLCO FVC

ρ* PDLCO_miRNA ρ* PFVC_miRNA

hsa-miR-125b-1† −0.41 0.037 −0.49 0.009

hsa-miR-1275 −0.55 0.003 −0.49 0.009

hsa-miR-144 −0.45 0.022 −0.59 0.001

hsa-miR-150 0.52 0.006 0.42 0.028

hsa-miR-196a† 0.58 0.002 0.42 0.030

hsa-miR-223 −0.45 0.021 −0.43 0.024

hsa-miR-31 0.44 0.024 0.41 0.032

hsa-miR-342-3p 0.53 0.005 0.47 0.014

hsa-miR-342-5p 0.59 0.002 0.47 0.014

hsa-miR-548e 0.53 0.006 0.44 0.022

hsa-miR-636 0.50 0.010 0.46 0.016

hsa-miR-891a 0.53 0.006 0.47 0.012

DLCO, lung diffusing capacity; FVC, forced vital capacity; IPF, idiopathic pulmonary fibrosis; PBMC, peripheral blood mononuclear cell.

*
Spearman’s rank correlation coefficient between miRNA expression level and DLCO/FVC

†
The miRNA originates from the opposite arm of the precursor
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Table 3.

The 21-gene signature in IPF PBMCs

DLCO FVC

Gene miRNA
a

SVR
b ρc PDLCO

gene
ρc PFV C

gene

ABHD10 hsa-miR-223 −1.2577 0.49 5.30×10−4 0.46 9.89×10−4

ATP2B1 hsa-miR-144 −1.2072 0.51 2.92×10−4 0.41 4.19×10−3

C1orf52 hsa-miR-144 −1.2476 0.46 1.24×10−3 0.49 4.49×10−4

DECR1 hsa-miR-223 −1.2593 0.41 3.78×10−3 0.46 1.06×10−3

DNAJC2 hsa-miR-144 −1.3116 0.53 1.07×10−4 0.48 5.79×10−4

DST hsa-miR-144 −1.3074 0.47 9.01×10−4 0.57 2.40×10−5

DUSP10 hsa-miR-223 −1.2357 0.39 6.79×10−3 0.42 2.95×10−3

EXOSC9 hsa-miR-144 −1.2346 0.55 6.83×10−5 0.38 7.40×10−3

FBXW7 hsa-miR-223 −1.3105 0.69 7.22×10−8 0.40 4.82×10−3

HTRA1 hsa-miR-31 −1.2449 −0.60 7.89×10−6 −0.42 2.61×10−3

INPP5B hsa-miR-223 −1.2291 0.40 5.70×10−3 0.56 4.21×10−5

LCP2 hsa-miR-144 −1.2774 0.56 4.12×10−5 0.38 8.30×10−3

MSI1 hsa-miR-548e −1.3278 −0.56 5.11×10−5 −0.44 2.00×10−3

PRKRA hsa-miR-144 −1.2368 0.48 7.11×10−4 0.42 3.06×10−3

RBMXL2 hsa-miR-150 −1.2373 −0.56 4.50×10−5 −0.42 2.96×10−3

REL hsa-miR-144 −1.2180 0.53 1.45×10−4 0.42 2.90×10−3

SLC35F5 hsa-miR-144 −1.2466 0.44 1.90×10−3 0.38 8.02×10−3

SUCLG2 hsa-miR-144 −1.2016 0.53 1.17×10−4 0.37 9.09×10−3

TTC35 hsa-miR-223 −1.3046 0.44 2.16×10−3 0.41 3.99×10−3

hsa-miR-144 −1.3256

USP16 hsa-miR-223 −1.2207 0.45 1.32×10−3 0.42 2.96×10−3

YTHDF2 hsa-miR-144 −1.3317 0.51 2.60×10−4 0.46 9.80×10−4

a
Silencing miRNAs for the protein-coding genes in 21-gene signature

b
Abbreviation of mirSVR score, ranking miRNA-mRNA binding

c
Spearman’s rank correlation coefficient between gene expression level and DLCO/FVC

Transl Res. Author manuscript; available in PMC 2022 February 01.


	Abstract
	Introduction
	Materials and Methods
	Subjects and PBMC samples
	Profiling transcriptional expression utilizing exon arrays
	Profiling miRNA expression using the Exiqon array
	Statistical analysis
	Risk score

	Results
	Patient characteristics
	Identifying the miRNAs correlated with lung function in IPF PBMCs
	Survival by the prioritized miRNAs
	Identifying the genes correlated with lung function in IPF PBMCs
	miRNA-mRNA in silico analysis
	Survival by the 21-gene signature
	Validating the 12-miRNA and 21-gene signature
	Survival analysis controlling for age
	Comparison with published gene signatures

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.
	Table 2.
	Table 3.

